Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
InfiniteYou generates identity-preserved images with exceptional identity similarity, text-image alignment, quality, and aesthetics.
Qualitative comparison results of InfU with the state-of-the-art baselines, FLUX.1-dev IP-Adapter and PuLID-FLUX. The identity similarity and text-image alignment of the results generated by FLUX.1-dev IP-Adapter (IPA) are inadequate. PuLID-FLUX generates images with decent identity similarity. However, it suffers from poor text-image alignment (Columns 1, 2, 4), and the image quality (e.g., bad hands in Column 5) and aesthetic appeal are degraded. In addition, the face copy-paste issue of PuLID-FLUX is evident (Column 5). In comparison, the proposed InfU outperforms the baselines across all dimensions.
InfU features a desirable plug-and-play design, compatible with many existing methods. It naturally supports base model replacement with any variants of FLUX.1-dev, such as FLUX.1-schnell for more efficient generation (e.g., in 4 steps). The compatibility with ControlNets and LoRAs provides more controllability and flexibility for customized tasks. Notably, the compatibility with OminiControl extends our potential for multi-concept personalization, such as interacted identity (ID) and object personalized generation. InfU is also compatible with IP-Adapter (IPA) for stylization of personalized images, producing decent results when injecting style references via IPA. Our plug-and-play feature may extend to even more approaches, providing valuable contributions to the broader community.
Most images used on this website and related demos are sourced from consented subjects, with a few taken from public domains or generated by the models. These pictures are intended solely to showcase the capabilities of our research. If you have any concerns, please feel free to contact us, and we will promptly remove any inappropriate content.
The use of the released code, model, and demo must strictly adhere to the respective licenses. Our code is released under the
This research aims to positively impact the field of Generative AI. Users are granted the freedom to create images using this tool, but they must comply with local laws and use it responsibly. The developers do not assume any responsibility for potential misuse by users.
We sincerely acknowledge the insightful discussions from Stathi Fotiadis, Min Jin Chong, Xiao Yang, Tiancheng Zhi, Jing Liu, and Xiaohui Shen. We genuinely appreciate the help from Jincheng Liang and Lu Guo with our user study and qualitative evaluation.
If you find InfiniteYou useful for your research or applications, please cite our paper:
@article{jiang2025infiniteyou,
title={{InfiniteYou}: Flexible Photo Recrafting While Preserving Your Identity},
author={Jiang, Liming and Yan, Qing and Jia, Yumin and Liu, Zichuan and Kang, Hao and Lu, Xin},
journal={arXiv preprint},
volume={arXiv:2503.16418},
year={2025}
}