.. Tensorflow Integration ############################################### Tensorflow Integration ############################################### *********************************************** Save model *********************************************** .. code-block:: python3 import tensorflow as tf class Adder(tf.Module): @tf.function def add(self, x): return x + x model = Adder() tf.saved_model.save(model, "./", signatures=model.add.get_concrete_function(tf.TensorSpec([], tf.float32))) *********************************************** Use matxscript load SavedModel *********************************************** .. code-block:: python3 import matx tf_op = matx.script("./", backend='TensorFlow', device=-1, use_xla=0, allow_growth=False) *********************************************** Trace and inference *********************************************** .. code-block:: python3 ix = matx.NDArray([1], [1], 'float32') def process(x): return tf_op({"x":x}) ret = process(ix) print(ret) s = matx.trace(process, ix) ret = s.run({"x":ix}) print(ret)