matx.vision.crop_op 源代码

# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from typing import List, Any, Tuple
from .constants._sync_mode import ASYNC
from ..native import make_native_object

import sys
matx = sys.modules['matx']


class _CenterCropOpImpl:
    """ CenterCropOp Impl """

    def __init__(self, device: Any, sizes: Tuple[int, int]) -> None:
        """ Initialize CenterCropOp

        Args:
            device (Any): the matx device used for the operation.
            sizes (Tuple[int, int]): output size for all images, must be 2 dim tuple.
        """
        self.op: matx.NativeObject = make_native_object(
            "VisionCropGeneralOp", device())
        assert len(sizes) == 2, \
            "The sizes len must be equals to 2 in CenterCropOp. "
        self.width: int = sizes[1]
        self.height: int = sizes[0]

    def __call__(self,
                 images: List[matx.runtime.NDArray],
                 sync: int = ASYNC) -> List[matx.runtime.NDArray]:
        batch_size = len(images)
        x = matx.List()
        x.reserve(batch_size)
        y = matx.List()
        y.reserve(batch_size)
        width = matx.List([self.width] * batch_size)
        height = matx.List([self.height] * batch_size)

        for i in range(batch_size):
            shape_: List[int] = images[i].shape()
            x_: int = (shape_[1] - self.width) // 2
            y_: int = (shape_[0] - self.height) // 2
            x.append(x_)
            y.append(y_)
        return self.op.process(images, x, y, width, height, sync)


[文档]class CenterCropOp: """ Center crop the given images """
[文档] def __init__(self, device: Any, sizes: Tuple[int, int]) -> None: """ Initialize CenterCropOp Args: device (Any): the matx device used for the operation. sizes (Tuple[int, int]): output size for all images, must be 2 dim tuple. """ self.op_impl: _CenterCropOpImpl = matx.script(_CenterCropOpImpl)(device=device, sizes=sizes)
[文档] def __call__(self, images: List[matx.runtime.NDArray], sync: int = ASYNC) -> List[matx.runtime.NDArray]: """ CenterCrop images Args: images (List[matx.runtime.NDArray]): input images. sync (int, optional): sync mode after calculating the output. when device is cpu, the params makes no difference. ASYNC -- If device is GPU, the whole calculation process is asynchronous. SYNC -- If device is GPU, the whole calculation will be blocked until this operation is finished. SYNC_CPU -- If device is GPU, the whole calculation will be blocked until this operation is finished, and the corresponding CPU array would be created and returned. Defaults to ASYNC. Returns: List[matx.runtime.NDArray]: center crop images Example: >>> import cv2 >>> import matx >>> from matx.vision import CenterCropOp >>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg >>> image = cv2.imread("./origin_image.jpeg") >>> device_id = 0 >>> device_str = "gpu:{}".format(device_id) >>> device = matx.Device(device_str) >>> # Create a list of ndarrays for batch images >>> batch_size = 3 >>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)] >>> op = CenterCropOp(device=device, size=(224, 224)) >>> ret = op(nds) """ return self.op_impl(images, sync)
class _CropOpImpl: """ CropOp Impl """ def __init__(self, device: Any) -> None: """ Initialize CropOp Args: device (Any): the matx device used for the operation. """ self.op: matx.NativeObject = make_native_object( "VisionCropGeneralOp", device()) def __call__(self, images: List[matx.runtime.NDArray], x: List[int], y: List[int], width: List[int], height: List[int], sync: int = ASYNC) -> List[matx.runtime.NDArray]: return self.op.process(images, x, y, width, height, sync)
[文档]class CropOp: """ Crop images in batch on GPU with customized parameters. """
[文档] def __init__(self, device: Any) -> None: """ Initialize CropOp Args: device (Any): the matx device used for the operation. """ self.op_impl: _CropOpImpl = matx.script(_CropOpImpl)(device=device)
[文档] def __call__(self, images: List[matx.runtime.NDArray], x: List[int], y: List[int], width: List[int], height: List[int], sync: int = ASYNC) -> List[matx.runtime.NDArray]: """ Crop images Args: images (List[matx.runtime.NDArray]): source/input image x (List[int]): the x coordinates of the top_left corner of the cropped region. y (List[int]): the y coordinates of the top_left corner of the cropped region. width (List[int]): desired width for each cropped image. height (List[int]): desired height for each cropped image. sync (int, optional): sync mode after calculating the output. when device is cpu, the params makes no difference. ASYNC -- If device is GPU, the whole calculation process is asynchronous. SYNC -- If device is GPU, the whole calculation will be blocked until this operation is finished. SYNC_CPU -- If device is GPU, the whole calculation will be blocked until this operation is finished, and the corresponding CPU array would be created and returned. Defaults to ASYNC. Returns: List[matx.runtime.NDArray]: crop images Example: >>> import cv2 >>> import matx >>> from matx.vision import CropOp >>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg >>> image = cv2.imread("./origin_image.jpeg") >>> device_id = 0 >>> device_str = "gpu:{}".format(device_id) >>> device = matx.Device(device_str) >>> # Create a list of ndarrays for batch images >>> batch_size = 3 >>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)] >>> x = [10, 20, 30] >>> y = [50, 35, 20] >>> widths = [224, 224, 224] >>> heights = [224, 224, 224] >>> op = CropOp(device=device) >>> ret = op(nds, x, y, widths, heights) """ return self.op_impl(images, x, y, width, height, sync)