matx.vision.imencode_op 源代码

# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from typing import List, Any, Tuple
from .constants._sync_mode import ASYNC
from ..native import make_native_object

import sys
matx = sys.modules['matx']


class _ImencodeOpImpl:
    """ Encode image to jpg binary impl"""

    def __init__(
            self,
            device: Any,
            fmt: str,
            quality: int,
            optimized_Huffman: bool,
            pool_size: int = 8) -> None:
        self.op: matx.NativeObject = make_native_object(
            "VisionImencodeGeneralOp", fmt, quality, optimized_Huffman, pool_size, device())

    def __call__(self, images: List[matx.runtime.NDArray]) -> List[bytes]:
        return self.op.process(images)


[文档]class ImencodeOp: """ Encode image to jpg binary """
[文档] def __init__( self, device: Any, fmt: str, quality: int, optimized_Huffman: bool, pool_size: int = 8) -> None: """ Initialize ImencodeOp Args: device (matx.Device): device used for the operation fmt (str): the color type for input image, support "RGB" and "BGR" quality (int): the jpeg quality, valid between [1, 100]. 100 means no loss. optimized_Huffman (bool): boolean value that control if optimized huffman tree is used. Enabling it usually means slower encoding but smaller binary size. pool_size (int, optional): concurrency of encode operation, only for gpu, Defaults to 8. """ self.op: _ImencodeOpImpl = matx.script( _ImencodeOpImpl)(device, fmt, quality, optimized_Huffman, pool_size)
[文档] def __call__(self, images: Any) -> List[bytes]: """ there is no sync model as all data will be on cpu before the return Args: images (List[matx.runtime.NDArray]): list of image on GPU Returns: List[bytes]: jpg encoded images Examples: >>> import matx >>> from matx.vision import ImencodeOp >>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg >>> image = cv2.imread("./origin_image.jpeg") >>> device_str = "gpu:0" >>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size) >>> device = matx.Device(device_str) >>> encode_op = ImencodeOp(device, "BGR") >>> r = encode_op([nds]) """ if isinstance(images, matx.runtime.NDArray): nd_list: List[matx.runtime.NDArray] = [] shape: List[int] = images.shape() for i in range(shape[0]): nd_list.append(images[i]) return self.op(nd_list) return self.op(images)
class _ImencodeNoExceptionOpImpl: """ Encode image to jpg binary without raising exception when handle invalid image impl""" def __init__( self, device: Any, fmt: str, quality: int, optimized_Huffman: bool, pool_size: int = 8) -> None: self.op: matx.NativeObject = make_native_object( "VisionImencodeNoExceptionGeneralOp", fmt, quality, optimized_Huffman, pool_size, device()) def __call__(self, images: List[matx.runtime.NDArray] ) -> Tuple[List[bytes], List[int]]: return self.op.process(images)
[文档]class ImencodeNoExceptionOp: """ Encode image to jpg binary without raising exception when handle invalid image"""
[文档] def __init__( self, device: Any, fmt: str, quality: int, optimized_Huffman: bool, pool_size: int = 8) -> None: """ Initialize ImencodeOp Args: device (matx.Device): device used for the operation fmt (str): the color type for output image, support "RGB" and "BGR" quality (int): the jpeg quality, valid between [1, 100]. 100 means no loss. optimized_Huffman (bool): boolean value that control if optimized huffman tree is used. Enabling it usually means slower encoding but smaller binary size. pool_size (int, optional): concurrency of encode operation, only for gpu, Defaults to 8. """ self.op: _ImencodeNoExceptionOpImpl = matx.script(_ImencodeNoExceptionOpImpl)( device, fmt, quality, optimized_Huffman, pool_size)
[文档] def __call__(self, images: Any ) -> Tuple[List[bytes], List[int]]: """ Args: images (List[matx.runtime.NDArray]): list of image on GPU Returns: List[bytes]: jpg encoded images Examples: >>> import matx >>> from matx.vision import ImencodeOp >>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg >>> image = cv2.imread("./origin_image.jpeg") >>> device_str = "gpu:0" >>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size) >>> device = matx.Device(device_str) >>> encode_op = ImencodeOp(device, "BGR") >>> r = encode_op([nds]) """ if isinstance(images, matx.runtime.NDArray): nd_list: List[matx.runtime.NDArray] = [] shape: List[int] = images.shape() for i in range(shape[0]): nd_list.append(images[i]) return self.op(nd_list) return self.op(images)