# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import List, Any, Tuple
from .constants._sync_mode import ASYNC
from ..native import make_native_object
import sys
matx = sys.modules['matx']
class _ImencodeOpImpl:
""" Encode image to jpg binary impl"""
def __init__(
self,
device: Any,
fmt: str,
quality: int,
optimized_Huffman: bool,
pool_size: int = 8) -> None:
self.op: matx.NativeObject = make_native_object(
"VisionImencodeGeneralOp", fmt, quality, optimized_Huffman, pool_size, device())
def __call__(self, images: List[matx.runtime.NDArray]) -> List[bytes]:
return self.op.process(images)
[文档]class ImencodeOp:
""" Encode image to jpg binary """
[文档] def __init__(
self,
device: Any,
fmt: str,
quality: int,
optimized_Huffman: bool,
pool_size: int = 8) -> None:
""" Initialize ImencodeOp
Args:
device (matx.Device): device used for the operation
fmt (str): the color type for input image, support "RGB" and "BGR"
quality (int): the jpeg quality, valid between [1, 100]. 100 means no loss.
optimized_Huffman (bool): boolean value that control if optimized huffman tree is used.
Enabling it usually means slower encoding but smaller binary size.
pool_size (int, optional): concurrency of encode operation, only for gpu, Defaults to 8.
"""
self.op: _ImencodeOpImpl = matx.script(
_ImencodeOpImpl)(device, fmt, quality, optimized_Huffman, pool_size)
[文档] def __call__(self, images: Any) -> List[bytes]:
""" there is no sync model as all data will be on cpu before the return
Args:
images (List[matx.runtime.NDArray]): list of image on GPU
Returns:
List[bytes]: jpg encoded images
Examples:
>>> import matx
>>> from matx.vision import ImencodeOp
>>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg
>>> image = cv2.imread("./origin_image.jpeg")
>>> device_str = "gpu:0"
>>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)
>>> device = matx.Device(device_str)
>>> encode_op = ImencodeOp(device, "BGR")
>>> r = encode_op([nds])
"""
if isinstance(images, matx.runtime.NDArray):
nd_list: List[matx.runtime.NDArray] = []
shape: List[int] = images.shape()
for i in range(shape[0]):
nd_list.append(images[i])
return self.op(nd_list)
return self.op(images)
class _ImencodeNoExceptionOpImpl:
""" Encode image to jpg binary without raising exception when handle invalid image impl"""
def __init__(
self,
device: Any,
fmt: str,
quality: int,
optimized_Huffman: bool,
pool_size: int = 8) -> None:
self.op: matx.NativeObject = make_native_object(
"VisionImencodeNoExceptionGeneralOp",
fmt,
quality,
optimized_Huffman,
pool_size,
device())
def __call__(self, images: List[matx.runtime.NDArray]
) -> Tuple[List[bytes], List[int]]:
return self.op.process(images)
[文档]class ImencodeNoExceptionOp:
""" Encode image to jpg binary without raising exception when handle invalid image"""
[文档] def __init__(
self,
device: Any,
fmt: str,
quality: int,
optimized_Huffman: bool,
pool_size: int = 8) -> None:
""" Initialize ImencodeOp
Args:
device (matx.Device): device used for the operation
fmt (str): the color type for output image, support "RGB" and "BGR"
quality (int): the jpeg quality, valid between [1, 100]. 100 means no loss.
optimized_Huffman (bool): boolean value that control if optimized huffman tree is used.
Enabling it usually means slower encoding but smaller binary size.
pool_size (int, optional): concurrency of encode operation, only for gpu, Defaults to 8.
"""
self.op: _ImencodeNoExceptionOpImpl = matx.script(_ImencodeNoExceptionOpImpl)(
device, fmt, quality, optimized_Huffman, pool_size)
[文档] def __call__(self, images: Any
) -> Tuple[List[bytes], List[int]]:
"""
Args:
images (List[matx.runtime.NDArray]): list of image on GPU
Returns:
List[bytes]: jpg encoded images
Examples:
>>> import matx
>>> from matx.vision import ImencodeOp
>>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg
>>> image = cv2.imread("./origin_image.jpeg")
>>> device_str = "gpu:0"
>>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)
>>> device = matx.Device(device_str)
>>> encode_op = ImencodeOp(device, "BGR")
>>> r = encode_op([nds])
"""
if isinstance(images, matx.runtime.NDArray):
nd_list: List[matx.runtime.NDArray] = []
shape: List[int] = images.shape()
for i in range(shape[0]):
nd_list.append(images[i])
return self.op(nd_list)
return self.op(images)