# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Any, List
from .constants._sync_mode import ASYNC
from ..native import make_native_object
import sys
matx = sys.modules['matx']
class _NormalizeOpImpl:
""" NormalizeOp Impl """
def __init__(self,
device: Any,
mean: List[float],
std: List[float],
dtype: str = "float32",
global_shift: float = 0.0,
global_scale: float = 1.0) -> None:
self.op: matx.NativeObject = make_native_object(
"VisionNormalizeGeneralOp", mean, std, global_shift, global_scale, dtype, device())
def __call__(self,
images: List[matx.runtime.NDArray],
sync: int = ASYNC) -> List[matx.runtime.NDArray]:
return self.op.process(images, sync)
[文档]class NormalizeOp:
""" Normalize images with mean and std, and cast the image data type to target type.
"""
[文档] def __init__(self,
device: Any,
mean: List[float],
std: List[float],
dtype: str = "float32",
global_shift: float = 0.0,
global_scale: float = 1.0) -> None:
""" Initialize NormalizeOp
Args:
device (Any) : the matx device used for the operation
mean (List[float]) : mean for normalize
std (List[float]) : std for normalize
dtype (str, optional) : output data type when normalize finished, float32 by default.
global_shift (float, optional) : shift value for all pixels after the normalization, 0.0 by default.
global_scale (float, optional) : scale factor value for all pixels after the normalization, 1.0 by default.
"""
self.op_impl: _NormalizeOpImpl = matx.script(_NormalizeOpImpl)(device=device,
mean=mean,
std=std,
dtype=dtype,
global_shift=global_shift,
global_scale=global_scale)
[文档] def __call__(self,
images: List[matx.runtime.NDArray],
sync: int = ASYNC) -> List[matx.runtime.NDArray]:
""" Normalize images with mean and std, and cast the image data type to target type.
Args:
images (List[matx.runtime.NDArray]): target images.
sync (int, optional): sync mode after calculating the output. when device is cpu, the params makes no difference.
ASYNC -- If device is GPU, the whole calculation process is asynchronous.
SYNC -- If device is GPU, the whole calculation will be blocked until this operation is finished.
SYNC_CPU -- If device is GPU, the whole calculation will be blocked until this operation is finished, and the corresponding CPU array would be created and returned.
Defaults to ASYNC.
Returns:
List[matx.runtime.NDArray]: converted images
Example:
>>> import cv2
>>> import matx
>>> from matx.vision import NormalizeOp
>>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg
>>> image = cv2.imread("./origin_image.jpeg")
>>> device_id = 0
>>> device_str = "gpu:{}".format(device_id)
>>> device = matx.Device(device_str)
>>> # Create a list of ndarrays for batch images
>>> batch_size = 3
>>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)]
>>> mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
>>> std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
>>> op = NormalizeOp(device, mean, std)
>>> ret = op(nds)
"""
return self.op_impl(images, sync)
class _TransposeNormalizeOpImpl:
""" TransposeNormalizeOp Impl """
def __init__(self,
device: Any,
mean: List[float],
std: List[float],
input_layout: str,
output_layout: str,
dtype: str = "float32",
global_shift: float = 0.0,
global_scale: float = 1.0) -> None:
self.normalize: matx.NativeObject = make_native_object(
"VisionNormalizeGeneralOp", mean, std, global_shift, global_scale, dtype, device())
self.transpose: matx.NativeObject = make_native_object(
"VisionTransposeGeneralOp", device())
self.stack: matx.NativeObject = make_native_object(
"VisionStackGeneralOp", device())
self.input_layout: str = input_layout
self.output_layout: str = output_layout
def __call__(self,
images: List[matx.runtime.NDArray],
sync: int = ASYNC) -> matx.runtime.NDArray:
norm_nds = self.normalize.process(images, ASYNC)
stack_nd = self.stack.process(norm_nds, ASYNC)
transpose_nd = self.transpose.process(stack_nd, self.input_layout, self.output_layout, sync)
return transpose_nd
[文档]class TransposeNormalizeOp:
""" Normalize images with mean and std, cast the image data type to target type,
stack the images into a single array, and then update the array format (e.g. NHWC or NCHW).
"""
[文档] def __init__(self,
device: Any,
mean: List[float],
std: List[float],
input_layout: str,
output_layout: str,
dtype: str = "float32",
global_shift: float = 0.0,
global_scale: float = 1.0) -> None:
""" Initialize TransposeNormalizeOp
Args:
device (Any) : the matx device used for the operation
mean (List[float]) : mean for normalize
std (List[float]) : std for normalize
input_layout (str) : the data layout format after the stack, e.g. NHWC
output_layout (str) : the target data layout, e.g. NCHW.
dtype (str, optional) : output data type when normalize finished, float32 by default.
global_shift (float, optional) : shift value for all pixels after the normalization, 0.0 by default.
global_scale (float, optional) : scale factor value for all pixels after the normalization, 1.0 by default.
"""
self.op_impl: _TransposeNormalizeOpImpl = matx.script(_TransposeNormalizeOpImpl)(
device=device,
mean=mean,
std=std,
input_layout=input_layout,
output_layout=output_layout,
dtype=dtype,
global_scale=global_scale,
global_shift=global_shift)
[文档] def __call__(self,
images: List[matx.runtime.NDArray],
sync: int = ASYNC) -> matx.runtime.NDArray:
""" Normalize images with mean and std, cast the image data type to target type,
stack the images into a single array, and then update the array format (e.g. NHWC or NCHW).
Args:
images (List[matx.runtime.NDArray]): target images.
sync (int, optional): sync mode after calculating the output. when device is cpu, the params makes no difference.
ASYNC -- If device is GPU, the whole calculation process is asynchronous.
SYNC -- If device is GPU, the whole calculation will be blocked until this operation is finished.
SYNC_CPU -- If device is GPU, the whole calculation will be blocked until this operation is finished, and the corresponding CPU array would be created and returned.
Defaults to ASYNC.
Returns:
matx.runtime.NDArray: converted images
Example:
>>> import cv2
>>> import matx
>>> from matx.vision import TransposeNormalizeOp
>>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg
>>> image = cv2.imread("./origin_image.jpeg")
>>> device_id = 0
>>> device_str = "gpu:{}".format(device_id)
>>> device = matx.Device(device_str)
>>> # Create a list of ndarrays for batch images
>>> batch_size = 3
>>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)]
>>> mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
>>> std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
>>> input_layout = matx.vision.NHWC
>>> output_layout = matx.vision.NCHW
>>> op = TransposeNormalizeOp(device, mean, std, input_layout, output_layout)
>>> ret = op(nds)
"""
return self.op_impl(images, sync)