# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import sys
from typing import List, Tuple, AnyStr, Any
from ..native import make_native_object
from ._dso_loader import load_text_ops_lib
load_text_ops_lib()
matx = sys.modules['matx']
[docs]class WordPieceTokenizerImpl(object):
[docs] def __init__(self,
vocab_path: str,
lookup_id: bool = True,
unk_token: Any = "[UNK]",
subwords_prefix: str = "##",
skip_empty: bool = True,
max_bytes_per_token: int = 100,
) -> None:
self.native_tokenizer: Any = make_native_object(
"text_tokenizer_WordPieceTokenizer",
vocab_path,
lookup_id,
unk_token,
subwords_prefix,
skip_empty,
max_bytes_per_token,
)
[docs] def tokenize(self, sentence: List[AnyStr]) -> List[AnyStr]:
return self.native_tokenizer.tokenize(sentence)
[docs]class WordPieceTokenizer:
[docs] def __init__(self,
vocab_path: str,
lookup_id: bool = True,
unk_token: Any = "[UNK]",
subwords_prefix: str = "##",
skip_empty: bool = True,
max_bytes_per_token: int = 100,
) -> None:
self.tokenizer_impl: WordPieceTokenizerImpl = matx.script(WordPieceTokenizerImpl)(
vocab_path, lookup_id, unk_token, subwords_prefix, skip_empty, max_bytes_per_token)
[docs] def tokenize(self, sentence: List[AnyStr]) -> List[AnyStr]:
return self.tokenizer_impl.tokenize(sentence)