Source code for matx.vision.channel_reorder_op

# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from typing import Any, List, Tuple
from .constants._sync_mode import ASYNC
from .opencv._cv_border_types import BORDER_DEFAULT

from ..native import make_native_object

import sys
matx = sys.modules['matx']


class _ChannelReorderOpImpl:
    """ ChannelReorder Impl """

    def __init__(self, device: Any) -> None:
        self.op: matx.NativeObject = make_native_object(
            "VisionChannelReorderGeneralOp", device())

    def __call__(self,
                 images: List[matx.runtime.NDArray],
                 orders: List[List[int]],
                 sync: int = ASYNC) -> List[matx.runtime.NDArray]:
        batch_size: int = len(images)
        assert len(
            orders) == batch_size, "The new order number for channel reorder should be equal to batch size."
        out_channel: int = len(orders[0])

        return self.op.process(images, orders, out_channel, sync)


[docs]class ChannelReorderOp: """ Apply channel reorder on input images. """
[docs] def __init__(self, device: Any) -> None: """ Initialize ChannelReorderOp Args: device (Any) : the matx device used for the operation """ self.op: _ChannelReorderOpImpl = matx.script(_ChannelReorderOpImpl)(device)
[docs] def __call__(self, images: List[matx.runtime.NDArray], orders: List[List[int]], sync: int = ASYNC) -> List[matx.runtime.NDArray]: """ Apply channel reorder on input images. Args: images (List[matx.runtime.NDArray]): target images. orders (List[List[int]]): index order of the new channels for each image. e.g. if want to change bgr image to rgb image, the order could be [2,1,0] sync (int, optional): sync mode after calculating the output. when device is cpu, the params makes no difference. ASYNC -- If device is GPU, the whole calculation process is asynchronous. SYNC -- If device is GPU, the whole calculation will be blocked until this operation is finished. SYNC_CPU -- If device is GPU, the whole calculation will be blocked until this operation is finished, and the corresponding CPU array would be created and returned. Defaults to ASYNC. Returns: List[matx.runtime.NDArray]: converted images Example: >>> import cv2 >>> import matx >>> from matx.vision import ChannelReorderOp >>> # Get origin_image.jpeg from https://github.com/bytedance/matxscript/tree/main/test/data/origin_image.jpeg >>> image = cv2.imread("./origin_image.jpeg") >>> device_id = 0 >>> device_str = "gpu:{}".format(device_id) >>> device = matx.Device(device_str) >>> # Create a list of ndarrays for batch images >>> batch_size = 3 >>> nds = [matx.array.from_numpy(image, device_str) for _ in range(batch_size)] >>> orders = [[2,1,0], [1,0,1], [2,2,2]] >>> op = ChannelReorderOp(device) >>> ret = op(nds, orders) """ return self.op(images, orders, sync)