# Copyright 2022 ByteDance Ltd. and/or its affiliates.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Any, Tuple, List
import sys
matx = sys.modules['matx']
from .. import ASYNC, StackOp, TransposeOp
from ._base import BaseInterfaceClass
[docs]class ToTensor(BaseInterfaceClass):
[docs] def __init__(self, device_id: int = -2, sync: int = ASYNC) -> None:
super().__init__(device_id=device_id, sync=sync)
[docs] def __call__(self, device: Any, device_str: str, sync: int) -> Any:
return ToTensorImpl(device, device_str, sync)
class ToTensorImpl:
def __init__(self,
device: Any,
device_str: str,
sync: int = ASYNC) -> None:
super().__init__()
self.stack_op: StackOp = StackOp(device)
self.transpose_op: TransposeOp = TransposeOp(
device, input_layout="NHWC", output_layout="NCHW")
self.device_str: str = device_str
self.sync: int = sync
self.name: str = "ToTensor"
def __call__(self, imgs: List[matx.NDArray], apply_index: List[int] = []) -> matx.NDArray:
stacked_img = self.stack_op(imgs)
transposed_img = self.transpose_op(stacked_img, sync=self.sync)
# res = transposed_img.torch()
res = transposed_img
return res
def __repr__(self) -> str:
return self.name + '(device={}, sync={})'.format(self.device_str, self.sync)